Break Memory Limits in Quantum Circuit Simulation
with High-fidelity Compression System

Abstract

Full-state quantum circuit simulation requires exponentially
increased memory size to store the state vector as the number
of qubits scales, presenting significant limitation in classical
computing systems. Our paper introduces BMQSIM, a novel
state vector quantum simulation framework that employs
lossy compression to address the memory constraints on
graphics processing unit (GPU) machines. BMQS1m effec-
tively tackles four major challenges for state-vector simula-
tion with compression: frequent compression/decompression,
high memory movement overhead, lack of dedicated error
control, and unpredictable memory space requirements. Our
work proposes an innovative strategy of circuit partition-
ing to significantly reduce the frequency of compression
occurrences. We introduce a pipeline that seamlessly inte-
grates compression with data movement while concealing its
overhead. Additionally, BMQSiM incorporates the first GPU-
based lossy compression technique with point-wise error
control. Furthermore, BMQS1M features a two-level memory
management system, ensuring efficient and stable execution.
Our evaluations demonstrate that BMQS1Mm can simulate the
same circuit with over 10 times less memory usage on aver-
age, achieving fidelity over 0.99 and maintaining comparable
simulation time to other state-of-the-art simulators.

1 Introduction

In recent years, quantum computing has proven effective
in addressing key problems across various fields, such as
machine learning [4, 25, 37], quantum chemistry [1], opti-
mization problems [11], and financial modeling [35]. The
advancement of quantum hardware aligns with the increas-
ing impact of quantum computing. For instance, the state-
of-the-art (SOTA) IBM Condor quantum system now sup-
ports 1,121 qubits, more than double of the 433 qubits sup-
ported by last year’s Osprey quantum system [12]. Executing
quantum algorithms on real quantum computers, however,
faces fundamental challenges. First, in the current Noisy
Intermediate-Scale Quantum (NISQ) era [34], noise inter-
ference in the hardware results in inaccurate measurement
distribution. Second, designing new quantum algorithms
requires iterative trials to verify, which is impractical on
quantum computer platforms. Third, publicly available quan-
tum computers (specifically those with a large number of
qubits, e.g., > 16) are much less resourceful and usually re-
side in cloud services; hence, access to those machines is
limited. Thus, quantum circuit simulation has become an
essential approach for realizing the full potential of quantum
computing [17].

Running a full-state quantum circuit simulation (i.e., state-
vector simulation) presents a formidable challenge: as the
number of simulated qubits increases, the memory require-
ment grows exponentially. Several significant issues are as-
sociated with this: (1) Simulating large quantum systems
requires extensive memory capacity in classical systems.
For instance, simulating a 48-qubit circuit would fully oc-
cupy the entire memory of Frontier (4.6 petabytes of DDR4
memory), the most advanced high-performance computing
(HPC) machine currently available [2]. (2) Even when the
memory capacity requirement is met, accessing such HPC
systems requires dedicated allocation, which is usually quite
competitive due to high demand. Consequently, researchers
in quantum computing are often constrained to work with
much smaller machines, such as personal computers or local
workstations that typically have only dozens of gigabytes of
memory. This reliance severely restricts the ability to simu-
late large quantum systems, hindering scientific discovery.

While recent developments in state-vector simulators have
made significant strides in performance improvement [9, 18,
438, 49], optimizing memory usage remains a largely over-
looked area. Tensor network simulation is expected to ad-
dress this issue [27, 32] by representing the quantum circuit
using tensor structures and employing tensor contraction
to compute the final state vector amplitudes. However, ten-
sor network simulators face significant limitations when
simulating highly entangled quantum circuits [31, 44]. For
entanglement-heavier circuits, both the computational and
memory overhead of tensor network simulators grow sub-
stantially. This restricts their applicability primarily to cir-
cuits that are shallow and exhibit low entanglement between
qubits. For instance, using tensor network simulators to ex-
ecute the Quantum Approximate Optimization Algorithm
(QAOA) [11] and the Variational Quantum Eigensolver (VQE)
[33], the most representative quantum algorithms in the
NISQ era, faces significant limitations. In QAOA, tensor net-
works can only efficiently manage a limited number of layers
[26], while an arbitrary number of operational layers is essen-
tial to increase effectiveness [10, 14]. For VQE, the enormous
number of gates and the level of qubit entanglement [41]
create impractical scenarios for tensor networks to solve.

That said, state vector-based quantum circuit simulation
offers generality and universal benefits for simulating com-
plex quantum algorithms. To this end, relaxing the mem-
ory constraint for state vector simulation is the top priority
task. In the classical HPC domain, data compression has
proven effective in multiple scientific areas for memory re-
duction. Broadly speaking, compression techniques can be

classified into lossy and lossless, based on the trade-offs be-
tween the error and compression ratio they introduce to the
data. Compared to lossless compression, lossy compression
tends to provide better compression rates [46, 47], making it
more suitable for high-memory burden scenarios like quan-
tum simulation. Recent studies [5, 15, 43, 46] have devel-
oped error-bounded lossy compressors on GPUs, achieving
a balance between compression ratios, high-quality data
reconstruction, and performance. Incorporating these ad-
vanced compression algorithms into quantum simulation
holds considerable promise for significantly reducing mem-
ory demands, thereby addressing the fundamental challenge
in the field.

However, the direct application of a compression tech-
nique on state-vector simulations is inefficient and may re-
sult in low simulation fidelity. A prior study [45] introduces
a workflow that addresses this integration. The workflow
starts with compressing the entire state vector. For each gate
in the circuit, it breaks the compressed elements into blocks,
decompresses each block, updates the state elements in the
block, and then re-compresses it until all blocks are processed.
This design introduces several potential complications, par-
ticularly concerning the performance of the simulation and
the fidelity of the quantum state. These issues encompass
five primary domains:

Challenge®: Frequent Compression. Since the entire
state vector needs to be updated when simulating each quan-
tum gate, a large quantum system would require frequent
compression and decompression operations on the critical
path of the state vector simulation, introducing significant
performance overhead. Moreover, lossy compression inher-
ently introduces errors into the reconstructed data. When
simulating deep quantum circuits, these errors accumulate
and degrade the fidelity of the final results.

Challenge®: Memory Movement Overhead. To maxi-
mize the number of qubits supported by simulation and im-
prove the simulation performance, the involvement of large
memory space such as CPU memory and high-parallelism
computing resources like GPUs is necessary. However, the
data movement between the CPU and GPU to take advantage
of computation acceleration incurs significant overhead.

Challenge®: Lack of Dedicated Error Control Scheme.

Effective error control in lossy compression is essential, par-
ticularly for the point-wise relative error control scheme for
state-vector simulation [45]. The GPU-based compression
processes would outperform their CPU-based alternatives
and eliminate potential additional memory transfers between
the CPU and GPU. However, current GPU-based lossy com-
pressors do not incorporate such a scheme.

Challenge®: Unpredictable Memory Consumption
of Compressed State Vectors. When handling large input
data, lossy compressors often divide the data into smaller
chunks for independent compression. However, the memory
footprints of the compressed state vector chunks depend on

the properties of the state vector, complicating the accurate
assessment of whether the available memory will suffice for
the simulation.

In response to these challenges, we introduce a novel
state vector quantum simulation framework, BMQS1m?, by
efficiently integrating lossy compression techniques. This
framework can break the memory limit to support the robust
simulation of more qubits on GPU machines while main-
taining high fidelity in simulation results by significantly
reducing the frequency of compression with a novel circuit
partition scheme. BMQS1M is adaptable, allowing for easy in-
tegration into various simulators, enhancing its utility across
different simulation backends.

Our paper makes the following contributions:

e We introduce a novel circuit partitioning strategy, ef-
fectively addressing low-fidelity and low-performance
concerns of the compression-integrated simulation. This
method divides the simulation process into discrete sub-
tasks, each involving a partition of the circuit and cor-
responding elements of the state vector. This approach
significantly reduces the frequency of compression and
decompression operations, thereby maintaining excep-
tionally high simulation fidelity and significantly improv-
ing simulation time.

e We propose an innovative workflow pipeline that con-
currently executes (de)compression operations and data
movement. This approach minimizes the perceived over-
head in the simulation process by effectively hiding these
operations within the data transfer time frames.

e We develop the first GPU-based point-wise error control
mechanism in a lossy compressor. It offers adaptability
to other compressors requiring absolute error control,
marking a significant advancement in GPU-accelerated
data compression.

e We propose a two-level memory management system
to address the challenge of unpredictable compressed
state vector block sizes. It dynamically manages memory
(de)allocation and uses the GPUDirect Storage technique
to create an effective secondary memory buffer in an
SSD, ensuring efficient memory utilization and enhanced
operational stability.

e Evaluations on various circuits demonstrate that BMQS1m
significantly enhances the capabilities of SOTA state-
vector simulators by enabling the simulation of up to 14
additional qubits (on average 10 additional qubits) under
the same memory constraints, while maintaining compa-
rable simulation times to SOTA simulators.

This paper is organized as follows: §2 provides background
information. §3 analyzes the problem and discusses the issues
of basic solutions. §4 details our design. Evaluation results
are presented in §5. Finally, §6 summarizes our findings and
discusses future research directions.

The code is hosted at https://github.com/paperuse62/code.

https://github.com/paperuse62/code

2 Background

In this section, we introduce state-vector simulation, floating-
point data compression, and CUDA architecture.

2.1 Principles of State-Vector Simulation

In quantum computing, a qubit, like a bit in classical com-
puting, is the fundamental unit for computing. Unlike bits
in traditional computing, a qubit can have many more states
besides 0 and 1. A qubit |i/) is a two-level state that can be
expressed as:

) = a0l0) + a1[1)
Here, ay and a; represent two complex amplitudes, where

lag|? + |a1|? = 1. The quantum state with n qubits can be
described as a state vector containing 2" complex amplitudes:

|¢> = (,10...0()|0 cee 00> + ao...01|0 s 01> + -+ (,11...11|1 s 11>

This state also adheres to the condition }; |a;|* = 1. The
subscripts of a are the indices in binary format. In the com-
putation of simulation, the state vector is often denoted as a
column vector:

ao---00

do---01

ar-..11

A quantum gate represents a unitary operation applied
to qubit(s), and a series of quantum gates operating on a
set of qubits forms a quantum circuit. Applying a gate to
a qubit is equivalent to conducting a matrix multiplication
of the gate unitary matrix and the elements in the state
vector. These matrices modify the elements of the state vector
corresponding to the target qubit(s). The most common types
of gates are single-qubit gates and double-qubit gates. For
a single-qubit gate (a 2 X 2 matrix) applied to qubit k, the
operation is to multiply the matrix with two elements whose
indices differ only in the k bit:

’
a, 1...el a,i 1,1
f‘zn,l"'ok"'eo _ |Unn Uiz en_y 0k e
>
a u u a2 2 2
€2 ,,12___33 21 22 ety 12-ed

2n-1’

V[Zel],eilzeiz for0<i<?2%andi# k
22

where [a*] are the state vector amplitudes and [u*] is the
unitary matrix of the applied gate. Similarly, for a double-
qubit gate (a 4 X 4 matrix) applied to qubits g and k, the
matrix operation is:

a 1 1 1 1
e c:0g0:+0, -+€, gl ol..ol...el
i G u1p Uz Uiz Ui [Fen; 00 e

a
egn,l"'oé'“li"'eg _ Ug1 Uz Uz Uy aeﬁn,l‘“oé'“li'“eg
’

a . u u u u Ae3 13,033
SRR TR B 31 Usz Uz Usq| g3 130l
’ Usr Ug2 Uz Uad] @ee qa qa. 4
egn 1...1‘;...1i...e§ 2n-1 4 Tk 0

V[a*],eilze?:e?’:efl

for0<i<2"andi#k,i#q

An important requirement for both single-qubit gates and
double-qubit gates is that simulating a gate operation re-
quires iterating through the entire state vector.

2.2 Floating-Point Lossy Compression

In the field of data compression, there are two main types:
lossless and lossy compression. Lossless compression retains
the original data perfectly, while lossy compression, in ex-
change for a higher compression ratio, incurs some loss of
accuracy. The latter is suitable for scenarios where a certain
level of data degradation is acceptable.

Recently, there have been significant advancements in
lossy compression algorithms, particularly for floating-point
scientific data. Prominent examples are SZ [8, 21, 23, 40],
ZFP [24], MGARD [13, 22], and TTHRESH [3]. These al-
gorithms are distinct from traditional lossy compressors
for images/videos, as they feature precise error-controlling
schemes. These schemes allow for control over the level of
accuracy in reconstructed data and further data analysis.

With the rise of GPU-based systems, compatible versions
of these compressors, such as cuSZ [6, 43], cuZFP [7], and
MGARD-GPU [5], have been developed using CUDA [36].
Furthermore, new GPU-oriented lossy compressors like FZ-
GPU [46], bitcomp [30], and cuSZp [15] have emerged. These
GPU versions typically offer higher compression through-
puts than their CPU counterparts.

However, a gap remains in current GPU compressors: most
only support absolute error control or fixed-rate modes. The
former keeps the maximum error within a user-defined limit,
while the latter targets a specific compression ratio. A critical
missing feature is a point-wise relative error control scheme,
vital for state-vector simulation to ensure high fidelity [45].

2.3 CUDA Memory Architecture

The increasing adoption of GPUs as the main accelerators
of high-performance computing tasks is primarily due to
their superior parallel computation capabilities. Within the
CUDA architecture [36], a widely used programming model
for GPUs, processing units are organized into threads. These
threads are grouped into blocks, which are then organized
into a grid structure. GPUs typically feature on-chip memory,
or device memory, which is usually much less abundant
compared to CPU memory or main memory.

Most applications initialize memory allocation on the CPU
and then copy the data to the GPU for computation through
PCle. Therefore, asynchronous memory copy operations are
crucial for enhancing data transfer efficiency between the
CPU and GPU. Such operations enable GPU kernels (GPU
processes) to run concurrently with memory copy tasks,
optimizing data transfer efficiency. Recently, data copying
can occur directly between SSDs and GPU memory. For the
movement of data between SSDs and GPUs, the GPUDirect
Storage (GDS) technique is vital. This technique allows GPUs

to directly access data stored on SSDs, bypassing the CPU
and thus enhancing performance.

3 Feasibility Analysis

In this section, we provide a detailed analysis of the solution
developed in SC19-Sim [45] to integrate data compression
with state vector simulation and identify its shortcomings.
For simplicity, from now on, we use single-qubit gates and
binary representation of indices in all the following examples.

The prior work [45] proposed a basic solution of applying
compression techniques in state vector simulation. This so-
lution consists of two key designs: state vector partitioning
and state vector updating.

State Vector Partitioning. To maximize flexibility and
enable parallel execution of compression and simulation,
SC19-Sim divides the state vector into blocks, which we term
SV blocks. A demonstration of the state vector partition is
illustrated in Figure 1. Assume that the state vector is divided
into 2¢ SV blocks, and each SV block contains 2° state vector
elements (i.e., amplitudes). Given an n-qubit system, where
n = b+c, the higher c bits in the qubit index space are referred
to as the global index, while the lower b bits are referred to
as the local index. A clear observation is that within each SV
block, the global index remains the same, but the local index
varies. Different SV blocks have different global indices.

State Vector Updates. At the beginning of the simulation,
the state vector (SV) blocks are compressed and stored in the
system memory. During the simulation, each gate updates
the entire state vector once (as discussed in §2.1). This pro-
cess involves decompressing every SV block, updating the
amplitudes within it, and then recompressing it back into
the system memory. Depending on whether the target qubit
of the quantum gate is located in the global index or the local
index, the updating process may involve either two separate
SV blocks or a single SV block, as illustrated in Figure 2. We
summarize the updating rules as an observation.

Observation: If the target qubit #; is in the local index
set, the amplitudes needed for matrix-vector multi-
plication are within the same block. Otherwise, the
amplitudes are in different SV blocks, where their
exact positions depend on the target qubit.

Issues of the Basic Solution. Based on this observation,
the order of processing SV blocks in the simulation process
may vary due to the order of the different target qubits of
the gates in the circuit. Therefore, without careful design,
SC19-Sim applies each gate sequentially to the state vector,
requiring decompression and compression before and after
updating the state vector amplitudes.

This design exposes several issues: @ Since (de)compression
is executed on a per-gate basis, fully decompressing all SV

State Vector of n Qubits B3 3071000001 | ™ e s S 2770

. 01..1011(00..000| | ! [7] State Vector Block |

[2" elements] ! i
01..1011|00..001] [! @ Global Index Bits i

Equally Cut Into 1[0 Local Index Bits i

: oT-101] -1 111] | i

| 0 | 1 | | J | |2C_1| Same Different :___Blnf:\Ey_EI?;zr_efe_n_tﬁtl_o_n_'

Figure 1. A demonstration of state vector partitioning. We refer to the
higher c bits as the global index and the lower b bits as the local index.

Given a gate targeting the t'" qubit

tin local index : tin global index
(] : C =
[a}[olc]|[d]-{ol I\ [a]{o]c]|[d]-[e]7]
g e
| |E|| @.. ' | @.4| [a] [e]7]

1

leferent | @l DD:H
B/ocks ||E| ||:| D:‘

_______________________________________ ,
DGate Matrix DGlobaI Index Bits DLocaI Index Bits |
DState Vector Block DAII Combinations | :

same & kL0 O3

_1t —From

Figure 2. A demonstration of how the target qubit location influences
amplitude updates. The same alphabet denotes the same value (0 or 1).

blocks for every gate operation significantly lowers perfor-
mance. Moreover, as the circuit length (number of gates)
increases, the number of lossy compression operations esca-
lates, leading to an accumulation of errors and degradation of
state fidelity. @ The GPU is not leveraged, as the entire state
vector is processed only by the CPU. Leveraging the paral-
lel computing capability of GPUs can significantly improve
performance. However, the intensive data transfer between
CPU and GPU will heavily impact simulation efficiency. &
The compression-introduced error is not controlled. Random
errors introduced by compression will result in unguaran-
teed fidelity. Therefore, we need a specialized error control
scheme to bound the fidelity. @ The compression ratio is
unpredictable during the simulation process. The simulation
may halt midway due to insufficient memory space, neces-
sitating a backup memory management system to prevent
such interruptions.

4 Design of BMQSIm

Overview of BMQS1im’s Design. BMQS1uM is designed to
simulate full-state quantum circuits with a smaller memory
footprint to support more qubit systems. Figure 3 summa-
rizes the key techniques implemented in BMQS1im and the
respective sections where they are discussed. Specifically,
we introduce a specialized circuit partition approach (§4.1)
to minimize the (de)compression frequency hence signifi-
cantly improve the performance and increase the fidelity,
addressing @. We include a workflow design (§4.2) to over-
lap compression/decompression, data movement between

Circuit Partition Workflow Pipeline Point-wise Relative Two-level Memory
For Each Partition 7 i 7
w —JTl % [0] — + [0] Error Control Finish Updating of
@ .._:. _I—State Vector Blocks o [> PWR Error
i [OTi[2]3]) | > [2] Normal Space —
a2 —|——|—— ____________
e % y O\ [Pu#0][GPU#1] - [GPU#n|)
" EE “
9 | : O mMemory Movement @ GPU Kernels Log Space -—
& L___1' . Block Groups O State Vector Group —— Update For
Section 4.1 Section 4.2 Section 4.3 Section 4.4

Figure 3. An overview of our proposed BMQS1m.

CPUs and GPUs, and computation, addressing @. An error-
controlled GPU compressor (§4.3) is proposed to mitigate ©.
Finally, we present a two-level memory management system
(§4.4) to solve issue @.

4.1 Optimal-Compression Circuit Partition

As analyzed in Section 3, the basic solution leads to frequent
(de)compression because gates in the circuit require different
access patterns on SV blocks due to different target qubits.
This issue significantly impacts the simulation performance.

Insight from the Analysis. To solve this issue, we care-
fully analyze Observation in §3 and obtain two important
findings. (1) For multiple gates targeting the local index set,
we can apply them all after decompressing the correspond-
ing SV block because every amplitude in this block can find
its corresponding pair within the same block. (2) For multiple
gates targeting the global index set, since different gates may
require pairs of different SV blocks, we can involve a few
more SV blocks to make the multi-gate application possible
and balance the far-reach of pairs. An example of this is
shown in Figure 4: when two gates targeting different global
indices are applied, we can include more SV blocks to ensure
that the pairs of amplitudes needing updating can still be
found within these SV blocks. The number of SV blocks in-
volved is two to the power of the number of targeted global
indices. Insight is drawn from above findings:

Insight: If all the gates in the circuit target the local
index or a few specific global indices, then the state
vector update can be done for all the gates with one
decompression.

How to make the circuit consist only of gates target-
ing certain indices? We find that if we partition the circuit
into multiple stages where the number of global indices tar-
geted by the involved gates in a stage is limited, then within
such stage, all the gate operations can be performed using
the same SV block access pattern. Therefore, we propose a
circuit partition algorithm to partition the circuit into stages
given a pre-defined limit of number of global indices. Details
of this approach can be found in Algorithm 1. Specifically,
we define global indices that appear within a stage as inner
indices and other global indices that do not as outer indices.

Gate 0: targetmg t,in global Gate 0+ Gate 1

Gate 1: targeting ¢ in global
(I L]~ [b} B O
[]~ (D k][O B3]

Figure 4. An example of how SV blocks are involved based on target global
index changes. The same alphabet denotes the same value (0 or 1).

(®Set parameters: @Given a circuit: @ Partition to stages:

: el = Wi
AVt 58 | q e =67 4
\ SVblocksize=22 1 ¢ Alg 1 1 ! |
i ; o p E q,-m- 9 gzl i—,—l ' Inner=3,5 |
1 Inner size = logm . N—-BuEe AR !
------------------ q,mo— g, ' ' Outer=2,4 |

stage:

Figure 5. An example of the proposed circuit partition process.

After the user specifies the SV block size and the inner size,
the algorithm runs offline for a given circuit. For each stage,
we add one gate at a time from the input circuit (Line 11)
until the number of global indices in the stage reaches a
threshold (Lines 7-9). We repeat this process until the circuit
is fully traversed (Line 4). Note that the minimum number of
inner indices must be two (Line 3). This requirement stems
from the structure of quantum circuits, consisting of single-
and double-qubit gates. Ensuring at least two inner indices is
crucial for effective circuit partitioning when a double-qubit
gate’s target qubits both fall within the global indices.

An example of this process is depicted in Figure 5. In
this example, we partition the circuit into four stages with
Algorithm 1. For this 6-qubit (n = 6) circuit, the local index
size is 2 (b = 2), and the global index size is 4 (c = 4). In the
example stage from the step 4 in Figure 5, indices 3 and 5 are
the inner indices of this stage, while 2 and 4 are the outer

indices. All the gate operations in this stage only involve the
SV blocks with the same outer indices. We call this set of
SV blocks an SV group; there are a total of 4 groups in this
example. Each group can be updated independently.

With this design, each stage requires only one compres-
sion and one decompression operation, significantly reduc-
ing the frequency of compression. For instance, in the simu-
lation of a 33-qubit QFT circuit, our approach can decrease
the number of compression occurrences from 2,673 (i.e., the
number of gates) to just 28 (i.e., the number of stages). This
substantially increases the final result’s fidelity and also im-
proves overall performance.

4.2 Transfer-Concealed Workflow

On one hand, to maximize qubit support, it is beneficial to
store compressed state-vector (SV) blocks in the larger CPU
memory (e.g., 16GB to 512GB) compared to GPU memory
(e.g., 4GB to 80GB). On the other hand, GPU-based simulators
outperform CPU-based ones due to high parallelism ideal for
matrix multiplication. Therefore, BMQSim leverages both
CPU and GPU: compressing SV blocks in CPU memory and
assigning state vector updates to GPUs. This design, however,
requires frequent CPU-GPU memory transfers, complicating
block-wise state vector updates.

Pipeline design. To resolve this issue, we propose a mem-
ory transfer and computation overlapping pipeline. As de-
scribed in §4.1, the simulation is divided into discrete, in-
dependent tasks called SV groups, allowing for more mod-
ular and efficient processing. This characteristic is utilized
to overlap kernel executions with data transfers (as men-
tioned in §2.3, GPUs can perform memory copy operations
and kernel execution concurrently). A demonstration of this
pipeline design is shown in Figure 6: each SV group un-
dergoes a sequence of operations including host-to-device
memory copy, decompression, state vector updating, com-
pression, and device-to-host memory copy. These operations

Algorithm 1 Proposed circuit partition method.

Input: circuit, SV block size, inner size
Output: stages

1: stages =[]

2: current stage = []
3: threshold = max(inner size, 2) > 2 for double-qubit gates
4: while i < number of gates in circuit do
5: current gate = circuit[i]
6 query the global indices in [current stage + current gate]
7 if exceed the threshold then > Partition current stage
8 add current stage to stages
9 current stage = []

: > Clear current stage
10: end if

11: add current gate to current stage
12: i++

13: end while

14: if current stage not empty then
15: add current stage to stages
16: end if

CPU memory
‘—b

State vector groups

o) | [0 |

4

il 1

[x] Group index

| [JHost to Device [[]JDecompression [State Vector Update [[JCompression [l]Device to Host!
:

Figure 6. A demonstration of our multi-stream pipeline design.

are scheduled on the same CUDA stream to maintain the cor-
rect execution order. Additionally, operations for different
SV groups are scheduled to each CUDA stream repeatedly,
facilitating the overlap of overall processes. Moreover, kernel
executions can also be overlapped by the GPU scheduler to
fully leverage the computing resources in the GPUs. This
strategy efficiently overlaps memory operations and kernel
execution, enhancing overall performance.

Multi-GPU parallelization. Since the simulation process
is divided into independent tasks by our circuit partition, dif-
ferent GPUs can simultaneously process distinct SV groups
of SV blocks. This enables native support for concurrency
at the inter-GPU level in BMQSim. As shown in Figure 6,
each GPU handles partial SV groups and processes them
locally without GPU-to-GPU communication. Note that the
throughput of multi-GPU parallelization is bounded by the
PCle bandwidth, as all data transfer between the CPU and
GPUs occurs through PCle. When memory movement is
intensive, it can cause a starvation problem for GPUs (evalu-
ated in Section 5.8).

Note that in the beginning of the simulation, the state
vector is initialized to a standard base state (the first element
is 1, all the others are 0) as a common practice [19]. When
the initial state differs from this standard as the simulation
proceeds, a few quantum gates can be used to establish the
desired initial state. After partitioning the state vector, all SV
blocks, except the first one, consist only of zeros. Therefore,
there is no need to compress the same SV block multiple
times. During the initial compression, we only need to com-
press the block with the first element set to one and another
block containing all zeros. Then, we can copy the compressed
SV block with all zeros multiple times. This approach reduces
the (de)compression overhead by one instance.

4.3 Point-wise Error Control for GPU Compression

We introduce our proposed GPU point-wise compression er-
ror control to ensure that the compression-error propagation
in simulation can be bounded in the final results.

It has been proven that GPU lossy compression has much
better performance and similar compression ratios compared
to CPU compression. To this end, we employ GPU lossy com-
pression in BMQSIM to minimize the compression overhead.

Previous work has demonstrated a lower bound on the fi-
delity of the state vector when applying a point-wise relative
error bound [45]. Unfortunately, to our knowledge, current
SOTA GPU lossy compressors do not support the point-wise
relative error bound mode. To address this, we propose the
GPU Point-wise Error Compression algorithm. Drawing on
previous work by Liang et al. [20], we use a logarithmic
transformation to convert point-wise relative error bounds
to absolute error bounds.

Specifically, let f(x) = log,(x) be a bijective transforma-
tion of the original data point x. Applying an absolute error
bound b, to f(x) results in the original data being bounded
by a point-wise relative error b,, as shown by the equation:

[f 7 (f(x) +ba) — x| <

|x]

br (1)
The relationship between b, and b, can be expressed as:

ba = g(by) =log,(1+by) (2)

As a result, we can achieve point-wise relative error bounds.

Challenges. Note that the log, transformation in Equa-
tion (2) requires positive input values, but satisfying this
requirement is a non-trivial task. A common method is to
convert negative values to absolute values before applying
the log, transformation and use an array to record their in-
dices. However, this approach would significantly lower the
overall compression ratio due to the extra space for the index
array, potentially even leading to data size inflation.

Our solution. To address this challenge, we propose an
algorithm that avoids using an index array to record the
negative values. We detail this algorithm in Algorithm 2 (the
decompression process is simply the inverse). Specifically,
we use a bitmap to store the sign of each number in the
original array (Line 1), designating 0 for positive values and
zeros (Line 8), and 1 for negative values (Line 5). Then, we
convert the negative values to their additive inverse (Line 6)
and apply the log transformation (Line 10). Subsequently, we
apply lossy compression with absolute error-bounded mode
to the data to achieve point-wise error control (Line 15).

Note that based on our observations, bitmaps frequently
exhibit long sequences of repeated 0-bits or 1-bits, indicat-
ing that the sign of the state vector is often repeated over
extensive distances. To address this redundancy, we propose
a pre-scan of the bitmap (Line 16). Specifically, the bitmap is
partitioned into chunks, within which CUDA’s warp-level
fast scan functions, __ballot_any and __ballot_all, are em-
ployed. These functions, optimized by register direct data
exchange, rapidly assess large bitmap chunks to determine
if all bits within a chunk are all-0 or all-1. The results are
recorded, and redundant all-0 or all-1 chunks are removed.
The remaining data is finally compressed using an additional
lossless encoding method (Line 17). This approach not only
increases the compression ratio but also enhances overall
compression performance.

Algorithm 2 GPU point-wise relative error control compression.

Input: SV blocks
Output: compressed SV blocks, compressed bitmap

1: bitmap = []
2: while i < number of SV blocks do > Pipelined in Section 4.2
3: while j < number of elements in SV block do
4: if SV block[i][j] < 0 then
5: add 1-bit to bitmap > 1 denotes a negative number
6: SV block[i][j] = -SV block[i][j] > Convert to positive
7: else
8: add 0-bit to bitmap > 0 denotes a non-negative number
9: end if
10: SV block[i][j] = log2(SV block[i][j]) > Convert to log scale
11: j++
12: end while
13: i++

14: end while

15: lossy encode (SV block)
16: pre-scan(bitmap)

17: lossless encode (bitmap)

4.4 Two-Level Memory Management

The point-wise error-bounded lossy compression introduced
in BMQS1Mm raises a potential issue: no sufficient memory
guarantee for simulation due to variable compression ratios
during the simulation. To address this, we propose a two-
level memory management system. Specifically, if the main
memory is insufficient, the machine’s storage component is
employed as a fallback strategy to support the simulation.

Challenges. A couple of reasons make this solution chal-
lenging: 1. Data transfer from the storage to the GPU requires
an intermediate step of involving CPU memory, needing ad-
ditional memory space as a temporary buffer for SV blocks
from the storage. 2. Moving SV blocks from the storage to
CPU memory and then to GPU memory generates significant
latency, degrading the overall simulation performance.

Our solution. To address these challenges, we employ the
GDS technology (as introduced in §2.3) to enable direct mem-
ory access between GPU and storage, leveraging the Direct
Memory Access (DMA) engine. This method bypasses the
potential CPU bounce buffer that traditionally is used as an
intermediary for transferring memory between the storage
and GPU global memory. Utilizing GDS not only conserves
CPU memory—heavily employed for storing compressed SV
blocks—but also minimizes CPU overhead. This application
of GDS in our design thus enhances BMQSIM’s capacity to
handle larger quantum simulations more robustly.

During the simulation, if BMQSiM detects that there is
insufficient memory for an upcoming compressed SV block,
it calls the cuFile APIs [29] to directly save this chunk to the
storage via GDS. Our evaluation (§ 5) indicates that the per-
formance drop with two-level management is not significant
(i-e., 0.7% on average), highlighting our efficient design.

5 Experimental Evaluation
5.1 Experimental Setup

Machines. Due to the administrative privileges required
for driver support for the GDS technique, we conduct our
evaluation primarily using the following two machines:
Machine 1: A workstation equipped with a 28-core Intel
Xeon Gold 6238R CPU at 2.20GHz and two NVIDIA GTX
A4000 GPUs (40 SMs, 16 GB each), along with 128 GB DDR4
memory. This workstation runs Ubuntu 20.04.5 and CUDA
12.3.107. It also includes a Samsung 870 EVO MZ-77E4TOE
SSD with a capacity of 4 TB and a SATA 6Gb/s interface. The
GPUs in this workstation are connected via PCI Express 4.0.
Machine 2: To evaluate multi-GPU performance speedup,
we also include a node from an HPC cluster, which includes
a 64-core AMD EPYC 7713 CPU at 2.00GHz and four NVIDIA
Ampere A100 GPUs (108 SMs, 40GB each). This system has
256 GB DDR4 memory and runs CentOS 7.4 with CUDA
12.2.91. The GPUs are interconnected using NVLink.
Software. We implement BMQS1m based on SV-Sim [18],
primarily because SV-Sim (already merged into NWQSim
[38]) is an open-source platform with active maintenance.
Furthermore, we base our compression on bitcomp from
NVCOMP [30], as bitcomp excels among GPU lossy com-
pressors for its exceptional compression throughput and
ratio. Bitcomp integrates both lossless mode and lossy mode.
We use lossless mode for bitmap and lossy mode for data.
We use a point-wise relative error bound of 1073, as this
provides a balanced compression ratio and fidelity.
Baselines. We compare BMQS1im with the following base-
lines: SV-Sim [18], Qiskit-Aer [16], cuQuantum Appliance
[28], and HyQuas [48]. Each of these supports GPU-based
state-vector simulation. Additionally, we include a compar-
ison with another state-vector simulation work utilizing
compression, referred to as SC19-Sim [45]. However, as the
implementation of SC19-Sim is not publicly available, we
developed a prototype of SC19-Sim with SV-Sim and SZ2
[21, 39]. A detailed comparison is presented in Table 1.

Table 1. Comparison of Different State Vector Simulators

Existing State State Vector Support GPU Use
Vector Simulators Location Updating? Compression?
Qiskit CPU+GPU 4 X
SV-Sim GPU 4 X
HyQuas GPU v X
cuQuantum GPU v X
SC19-Sim CPU X v
BMQSIm CPU v v

Benchmark Circuits. We select eight quantum algo-
rithms from NWQBench [19]. This suite includes quantum
circuits with qubit numbers ranging from 23 to 33 and gate
numbers from 24 to 3010. The selected circuits are cat_state,
cc, ising, gft, bv, qsvm, ghz_state, and qaoa.

Table 2. Maximum Qubit Numbers for Different Simulators on Machine 1.

Algorithm Qiskit cuQuantum SV-Sim HyQuas BMQSim

cat_state 33 31 26 29 42
cc 30 N/A 26 29 37
ising 33 31 26 29 35
qft 33 31 26 29 36
bv 33 31 26 29 42
qsvm 33 31 26 29 35
ghz 33 31 26 29 42
qaoa 29 31 26 29 35

5.2 Evaluation of Supported Qubit Number

We begin by assessing the maximum supported number of
qubits across different simulators on Machine 1, as shown in
Table 2. Our evaluations indicate that BMQSim can support
up to 42 qubits, significantly exceeding other counterparts,
which support an average of 30 qubits. This capacity goes
beyond some entire HPC clusters under normal simulation
conditions. Note that with the help of an SSD (assuming SSDs
as an extral external storage space), BMQSIM can reach up to
47 qubits, which is close to the capacity of the Frontier HPC
cluster at 48 qubits [2], and 14 more than other simulators.
Note that the supported number of qubits varies due to the
unpredictable compression ratio.

5.3 Comparison with SC19-Sim

We then compare BMQS1im with another compression-based
state-vector simulation, SC19-Sim [45], to demonstrate the
high-performance and high-fidelity advantages of our work.

Since SC19-Sim is not open-source, we implemented a pro-
totype based on SV-Sim [18] with the fastest compression
technique, solution B, in their paper [45]. For a fair com-
parison, we implemented both a CPU version as described

cat_state cc
104 — . 10° 1]
107 1041 7]
, 103
10°
: : : L LR e)L
24 25 26 27 24 25 26 27
ising qft
106 . [1004 T [T ml
210 108
—10* 104
g0 10° =] il N
E 24 25 26 27 24 25 26 27
§ bv gsvm
B1s i [106 — mE]
Sl m
glo 105
£ 100
2 104
102 10° || 1 l
24 25 26 27 24 25 26 27
ghz qaoa
10t g — 106 — — T]
109 10°
104
102 3
10 = m N
24 25 26 27 24 25 26 27

Number of Qubits

[SC19-Sim(CPU) EEE SC19-Sim(GPU) [BMQSim(Ours)

Figure 7. Simulation time of SC19-Sim (CPU/GPU) and BMQSIM.

cat_state cc

1.0040.9970:999 0.9970.999 0.9970.999 0.9970:999 | 1 g4 0.9971.000 0.9971.000 (.9970.999 0.9970.999
0.95 ﬂ_ﬂ_[l_ﬂ 0.95 H_[I_[I_u

24 25 26 27 24 25 26 27

ising qft
100 0.999 1.000 0.999 0999] 1 1.000 0.999 0.999 0998
0.9
0.957|
0.95 { 0:94 0.95 0.4 0al B o
0.71:
0.7 0,66
>0.90
£5) 24 25 26 27 24 25 26 27
[7]
© bv qsvm
= 1.05
1.001 0,998 0.992028° B2 000’ | | 00 0.999 1.000 0.999 0.999
0.982 .
0.95 0,946 0.945 094 094
0.95 0.90
24 25 26 27 24 25 26 27
ghz qaoa

0999 49,1000 1.000 0.999

1.0040,0970.999 0.0970.999 0,9970:999 ,9970.999 | 100 0969

0.95 053

0.95 0.90
24 25 26 27 24
Number of Qubits

3 SC19-Sim E=E BMQSim(Ours)

25 26 27

Figure 8. Fidelity of SC19-Sim and BMQS1m (higher values better fidelity).

in the SC19-Sim [45] paper and a GPU version using the
same compression technique but utilizing GPUs to update
the state vectors. We ran this evaluation on Machine 1.
Simulation Time. We begin by comparing the simulation
time. The results are shown in Figure 7. Our findings indi-
cate that BMQS1im outperforms both versions of SC19-Sim
under all configurations. The average speedup of BMQSim
compared to SC19-Sim (CPU) and SC19-Sim (GPU) is 1385x%
and 539x, respectively. This significant performance boost is
attributed to the low compression frequency, finely pipelined
workflow, and high-performance GPU compression. Note
that in some cases, the SC19-Sim CPU version outperforms
the SC19-Sim GPU version. This anomaly is due to the basic
solution implemented in SC19-Sim that does not overlaps
the data transfer and kernel execution. This results a huge
overhead in the memory movement between the CPU and
GPU. In contrast, our work leverages a pipeline design to
minimize the overhead of data transfer and gain significant
performance improvement (evaluated in Section 5.6).
Fidelity. Next, we evaluate the fidelity of simulation re-
sults. Fidelity is the most important metric for determining
the authenticity of final quatum state. It indicates the simi-
larity between the ideal output state and the simulated state,
with values ranging from 0 to 1, where higher is better. The
fidelity of our simulations is calculated using the equation:
Fidelity = |(Yideal|Vsim)|, Wwhere Yigeq is the ideal output
state from SV-Sim and ¢5;, is the state produced by the tested
lossy-compression enabled simulation. Our results show that
BMQSim achieves a fidelity greater than 0.99 across all con-
figurations, which is higher than SC19-Sim, particularly for
deep circuits. For instance, BMQS1m achieves 1.35X higher
fidelity on average compared to SC19-Sim in the qft circuit.

5.4 Evaluation of Memory Consumption

We present a memory consumption comparison between
BMQS1iMm and the standard for state vector simulation, which
is 24 bytes, where n denotes the number of qubits, as shown
in Figure 9. The (de)compression is performed once for each
circuit stage. We consider the maximum memory consump-
tion across all stages in the circuit as the final memory con-
sumption of the simulation. Extremely low memory usage is
observed for cat_state, bv, and ghz_state, with average mem-
ory reductions of 678.61 times for cat_state, 424.77 times for
bv, and 678.52 times for ghz_state. Other circuits also main-
tain significant memory reductions, averaging 15.50 times
for cc and 10.54 times for qft.

Note that in most cases, system memory is sufficient for
simulation. Thus, to evaluate the two-level memory man-
agement design that uses SSD storage as a backup plan for
simulation, we limit the memory space of Machine 1 to 8 GB
and run the same evaluation. We find that the SSD is lever-
aged only when the qubit number is larger than 32 qubits
for some circuits. For example, the ising circuit stores 39%
and 70% of its SV blocks in the SSD with qubit numbers 32
and 33, respectively.

5.5 Evaluation of Simulation Time

Next, we evaluate the simulation time of BMQSiM compared
with other baselines on Machine 1, as shown in Figure 10.

Compared to SV-Sim, BMQS1Mm offers significant perfor-
mance improvements. When NVLink is not available, SV-Sim
experiences substantial overhead from GPU-to-GPU com-
munication, resulting in the longest simulation times across
all settings. In contrast, BMQSim partitions the circuit into
stages, dividing the simulation into independent local jobs on
GPUs, which eliminates the GPU-to-GPU communication,
resulting in an average performance speedup of 75x.

In most cases, BMQS1iM achieves similar simulation times
to the Qiskit-Aer GPU simulator. For instance, the simula-
tion time ratio of BMQSim to Qiskit-Aer is 0.99 and 1.05 for
gsvm and qft on average, respectively. This demonstrates
that BMQSim has optimized the simulation process to per-
form on par with the SOTA GPU simulator from industry.
It is important to note that Qiskit-Aer utilizes both CPU
and GPU memory for storing the state vector and prioritizes
GPU memory based on our evaluation. Consequently, there
is a significant drop in performance when the qubit num-
ber increases from 30 to 31, as the GPU memory becomes
insufficient, causing a fallback to combined memory.

Despite the improvements, both cuQuantum and HyQuas
still outperform BMQSIM in most cases. This performance
disparity is primarily due to the SV-Sim backend on which
BMQSiuM is based. HyQuas, with its series of performance
optimizations, achieves the best performance among all sim-
ulators, being 12x faster than BMQSIm on average. However,

Standard Memory Consumption

o isi
= cat_state cc ising qft
E\ 1011 101 101 1011
= 10" 10 - 10 e
o 10 o] 100 R 10 poeEl et
c - e e e
o 108 e 10° e 10° SENSPEL) 10° T
=R Camw 108 -9 . _e- 10° L
Q 10°{ go-e——" o-—ea" 108 oo e
IS 24 25 26 27 28 29 30 31 32 33 24 25 26 27 28 29 30 31 32 33 24 25 26 27 28 29 30 31 32 33 24 25 26 27 28 29 30 31 32 33
3
0 bv qsvm ghz gaoa
S 101 101 10 0%
10 --* | 10 e
(@] 109 1010 . e 100 1010 . R
_-e---0 - . ---9
2 10 e 10° —aemnt® 108 e 10° oe-=n®
o 107 g o 107 e S P
£ 10° D 108 5= 100 oo 108 | oo
[9] 24 25 26 27 28 29 30 31 32 33 24 25 26 27 28 29 30 31 32 33 24 25 26 27 28 29 30 31 32 33 24 25 26 27 28 29 30 31 32 33
= Number of Qubits

.-

BMQSim(Ours)

Figure 9. Memory consumption of BMQSIM compared to the memory required for normal state vector simulation, denoted as standard memory consumption.

cat_state

ising qft

il

24 25 26 27 28 29 30 31
gsvm

24 25 26 27 28 29 30
bv

32 33

24 25 26 27 28 29 30 31 32
gaoa

24 25 26 27 28 29 30 31

ghz

1064
1054
1044
10°4
1024
104

Simulation Time (ms)

24 25 26 27 28 29 30 31 32 33

24 25 26 27 28 29 30 31 32 33

il

24 25 26 27 28 29 30 31 32 33

24 25 26 27 28 29 30 31 32 33

Number of Qubits

[BMQSim(Ours) @ Qiskit

[cuQuantum

[SV-Sim [HyQuas

Figure 10. Simulation time of different solutions on various quantum circuits and qubit numbers (missing bars indicate memory allocation errors).

this performance comes at the cost of higher memory con-
sumption, which limits HyQuas’s supported qubit number
compared to other GPU simulators. CuQuantum, tested using
the backend integrated in qsim [42], achieves approximately
9% speedup compared to BMQSim. However, cuQuantum is
not an open-source tool and only supports the float32 data
type. This inherent characteristic renders it faster than all
the other evaluated simulators using float64 data points.

Compared to these well-optimized works, the advantage
of BMQSiu lies in its ability to support a considerable larger
number of qubits. Given the popularity and acceptance in
the community, BMQSiMm offers comparable simulation time
with industry-level simulators like Qiskit with significantly
more supported qubits.

5.6 Compression Overhead Analysis

We further evaluate the compression overhead of our de-
sign by comparing it with the version of BMQS1m without
compression, as shown in Figure 11. For this evaluation, we
use a single A4000 GPU in Machine 1 to reduce the impact
of other overhead on the evaluation results. The results il-
lustrate that, thanks to our circuit partitioning and pipeline
design optimizations, the compression overhead is minimal
compared to the version without compression. Notably, in
some cases, BMQSIm even outperforms the no-compression
version. This is because, although compression adds over-
head to the simulation process, it also reduces memory copy

10

time due to the smaller size of the compressed SV blocks.
When the compression ratio is high, as in the cases of the
cat_state, bv, and ghz algorithms, the data copy overhead
becomes negligible, enabling BMQS1M to outperform the
version without compression. Overall, the compression tech-
nique contributes positively to the simulation time and leads
to a 9% speedup on average. In comparison, compression
accounts for approximately 61% on average of the SC19-Sim
simulation time, demonstrating that our work significantly
lifts compression overhead.

5.7 Pipeline Design Analysis

We also evaluate the impact of different CUDA stream num-
bers and present the results on Machine 1 in Figure 12. We
fix other parameters, such as the SV block size and inner
size, to isolate the impact of the stream number. When the
CUDA stream number is set to 1, it represents the version of
BMQSim without pipeline optimization. Our findings indi-
cate that, in most cases, the highest speedup is achieved when
the stream number is set to 2. Although the speedup is not
as significant with a stream number of 4, some improvement
is still observed. However, when the stream number reaches
8, the pipeline version becomes slower than the sequential
version. This is due to the stream context switch overhead
outweighing the benefits brought by pipeline speedup.

cat_state cc ising qft
s

- 10] 10 10° 4
é 10 10*
Q 10° 4 104]
£ 10? 10°
— 10°
'_
S ., bv qsvm ghz gaoa
= 10° 5 4
g 100 10° 10 10
S 104 10 10¢ 4
n 10% 4

102 103 102 4 10°

24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 3 32

I BMQSim w/o compression

1 24
Number of Qubits

25 26 27 28 29 30 31 32

B BMQSIim

24 25 26 27 28 29 30 31 32

Figure 11. Compression overhead of BMQSM with different numbers of qubits.

Iy
o
o

Normalized
°
©
&

Simulation Time
-
o
o

2 4
Number of CUDA Streams

—e— cat state -e- cc —e— ising aft bv -e- gsym —e— ghz -e: qaoa

Figure 12. Impact of CUDA stream number in our pipeline design.

]
gé 1.0
0.8
E g 0.6
© 9O o4
£ © 02
O 5 0.0
Zc cat_state cc ising qft bv qsvm ghz qaoa
v BN 1GPU [2GPUs [4GPUs

Figure 13. Scalability of BMQSIM on different algorithms.

5.8 Other Evaluations

Finally, we evaluate other settings, including the GPU num-
ber, inner size, SV block size, and circuit partition overhead.

Multi-GPU Speedup. To evaluate the scalability of our
work, we test it on up to 4 A100 GPUs from Machine 2 with
different circuits of 28 qubits, as shown in Figure 13. In the
QFT, our work achieves a speedup of 1.7x and 2.3x for 2
GPUs and 4 GPUs, respectively, thanks to the independent
SV groups design in BMQSim. While the speedup is not
significant when the number of GPUs rise from 2 to 4 in
some cases due to the CPU and GPU memory transfer rate
bounded by the PCle (as mentioned in Section 4.2) and the
high overhead of GPU operation launches.

Evaluation of Circuit Partition Overhead. To demon-
strate the overhead of the extra circuit partition strategy, we
evaluate the percentage of the circuit partition time com-
pared to the end-to-end latency of the simulation process, as
shown in Figure 14. The results indicate that the partition
time is negligible compared to the overall simulation time.

Parameter Tuning. To evaluate the influences of the in-
ner size and SV block size, we assess the simulation time and
compression ratio (the ratio of standard memory to practical

11

0.015 —e— cat_state

GE)°\° -e- cc

£ —e - ising

F 200107 e\ qft

g 8 * K bv

=R 3 - m

£ $ 0005 asv

g E —e- ghz

a - gaoa

0.000

27 28 29 30
Number of Qubits

31 32 33

Figure 14. Circuit partition time as a percentage of overall simulation time.

S
l'"U/atio,, Tim
e

Press;
0N Ratio (s

+4.891
0.0008

0.0007

0.0006

4
3
2
1

0

0.0005

Figure 15. The impact of two system parameters (i.e., inner size and SV
block size) on compression ratio (left) and simulation time (right).

memory) with different settings for the 30-qubit qaoa algo-
rithm, as shown in Figure 15. Our findings indicate that the
compression ratio does not vary significantly with different
inner sizes and SV block sizes. However, the simulation time
is shorter with higher inner sizes and SV block sizes. This is
because a larger inner size and SV block size result in fewer
stages and, consequently, fewer kernel launches.

6 Conclusion and Future Work

In this paper, we introduced BMQS1Mm to address memory lim-
itations in quantum simulation. By innovatively employing
lossy compression and effectively tackling challenges such
as low simulation fidelity and high compression overhead,
BMQSim has successfully enabled the simulation of up to 14
(on average 10) additional qubits under memory constraints,
with fidelity over 0.999 in almost all cases.

In the future, we plan to integrating BMQSimwith other
state-vector simulators such as cuQuantum and Qiskit to
improve the performance and increase the usability.

12

References

(1]

—
Do

]

(10]

(11]

(12]

(13]

(14]

(15]

Alan Aspuru-Guzik, Anthony D Dutoi, Peter J Love, and Martin Head-
Gordon. Simulated quantum computation of molecular energies. Sci-
ence, 309(5741):1704-1707, 2005.

Scott Atchley, Christopher Zimmer, John Lange, David Bernholdt,
Veronica Melesse Vergara, Thomas Beck, Michael Brim, Reuben Bu-
diardja, Sunita Chandrasekaran, Markus Eisenbach, et al. Frontier:
Exploring exascale. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1-16, 2023.

Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. Tthresh:
Tensor compression for multidimensional visual data. IEEE transac-
tions on visualization and computer graphics, 26(9):2891-2903, 2019.
Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost,
Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature,
549(7671):195-202, 2017.

Jieyang Chen, Lipeng Wan, Xin Liang, Ben Whitney, Qing Liu, David
Pugmire, Nicholas Thompson, Jong Youl Choi, Matthew Wolf, Todd
Munson, Ian Foster, and Scott Klasky. Accelerating multigrid-based
hierarchical scientific data refactoring on gpus. In 2021 IEEE Interna-
tional Parallel and Distributed Processing Symposium, pages 859-868.
IEEE, 2021.

cuSZ. https://github.com/szcompressor/cuSZ. Online.

cuZFP. https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp. On-
line.

Sheng Di and Franck Cappello. Fast error-bounded lossy HPC data
compression with SZ. In 2016 IEEE International Parallel and Dis-
tributed Processing Symposium, pages 730-739, Chicago, IL, USA, 2016.
IEEE.

Bo Fang, M. Yusuf Ozkaya, Ang Li, Umit V. Catalyiirek, and Sriram
Krishnamoorthy. Efficient hierarchical state vector simulation of
quantum circuits via acyclic graph partitioning. In CLUSTER, pages
289-300, 2022.

Edward Farhi, David Gamarnik, and Sam Gutmann. The quantum
approximate optimization algorithm needs to see the whole graph: A
typical case. arXiv preprint arXiv:2004.09002, 2020.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum
approximate optimization algorithm. arXiv preprint arXiv:1411.4028,
2014.

Jay Gambetta. Ibm’s roadmap for scaling quantum technol-
ogy. https://www.ibm.com/quantum/blog/ibm-quantum-roadmap?
mhsrc=ibmsearch_a&mhq=condor, 2020.

Qian Gong, Jieyang Chen, Ben Whitney, Xin Liang, Viktor Resh-
niak, Tania Banerjee, Jaemoon Lee, Anand Rangarajan, Lipeng Wan,
Nicolas Vidal, et al. Mgard: A multigrid framework for high-
performance, error-controlled data compression and refactoring. Soft-
wareX, 24:101590, 2023.

Gian Giacomo Guerreschi and Anne Y Matsuura. Qaoa for max-cut
requires hundreds of qubits for quantum speed-up. Scientific reports,
9(1):1-7, 2019.

Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li, and Franck Cap-
pello. cuszp: An ultra-fast gpu error-bounded lossy compression
framework with optimized end-to-end performance. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1-13, 2023.

IBM. Qiskit. https://qiskit.org/. Online.

Tyson Jones, Anna Brown, Ian Bush, and Simon C Benjamin. Quest
and high performance simulation of quantum computers. Scientific
reports, 9(1):1-11, 2019.

Ang Li, Bo Fang, Christopher Granade, Guen Prawiroatmodjo, Bettina
Heim, Martin Roetteler, and Sriram Krishnamoorthy. Sv-sim: scalable
pgas-based state vector simulation of quantum circuits. In SC21, pages
1-14, 2021.

13

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. Qasm-
bench: A low-level qasm benchmark suite for nisq evaluation and
simulation. arXiv preprint arXiv:2005.13018, 2021.

Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and Franck Cap-
pello. An efficient transformation scheme for lossy data compression
with point-wise relative error bound. In 2018 IEEE International Con-
ference on Cluster Computing (CLUSTER), pages 179-189. IEEE, 2018.
Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi
Guo, Zizhong Chen, and Franck Cappello. Error-controlled lossy com-
pression optimized for high compression ratios of scientific datasets.
In 2018 IEEE International Conference on Big Data, pages 438—447. IEEE,
2018.

Xin Liang, Ben Whitney, Jieyang Chen, Lipeng Wan, Qing Liu, Ding-
wen Tao, James Kress, David Pugmire, Matthew Wolf, Norbert Pod-
horszki, et al. Mgard+: Optimizing multilevel methods for error-
bounded scientific data reduction. IEEE Transactions on Computers,
71(7):1522-1536, 2021.

Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert Underwood, Ali M
Gok, Jiannan Tian, Junjing Deng, Jon C Calhoun, Dingwen Tao, et al.
Sz3: A modular framework for composing prediction-based error-
bounded lossy compressors. IEEE Transactions on Big Data, 9(2):485—
498, 2022.

Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2674—
2683, 2014.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum al-
gorithms for supervised and unsupervised machine learning. arXiv
preprint arXiv:1307.0411, 2013.

Danylo Lykov, Angela Chen, Huaxuan Chen, Kristopher Keipert,
Zheng Zhang, Tom Gibbs, and Yuri Alexeev. Performance evalua-
tion and acceleration of the qtensor quantum circuit simulator on
gpus. In 2021 IEEE/ACM Second International Workshop on Quantum
Computing Software (QCS), pages 27-34. IEEE, 2021.

Igor L Markov and Yaoyun Shi. Simulating quantum computation by
contracting tensor networks. SIAM Journal on Computing, 38(3):963—
981, 2008.

NVIDIA. cuquantum: Accelerate quantum computing research. https:
//developer.nvidia.com/cuquantum-sdk. Online.

NVIDIA. GDS cuFile API Reference. https://docs.nvidia.com/
gpudirect-storage/api-reference-guide/index.html. Online.
NVIDIA. Nvcomp. https://developer.nvidia.com/nvcomp. Online.
Stellan Ostlund and Stefan Rommer. Thermodynamic limit of density
matrix renormalization. Physical review letters, 75(19):3537, 1995.
Yuchen Pang, Tianyi Hao, Annika Dugad, Yiging Zhou, and Edgar
Solomonik. Efficient 2d tensor network simulation of quantum sys-
tems. In SC20: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 1-14. IEEE, 2020.
Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,
Xiao-Qi Zhou, Peter J Love, Alan Aspuru-Guzik, and Jeremy L O’brien.
A variational eigenvalue solver on a photonic quantum processor.
Nature communications, 5(1):4213, 2014.

John Preskill. Quantum computing in the nisq era and beyond. Quan-
tum, 2:79, 2018.

Patrick Rebentrost, Brajesh Gupt, and Thomas R Bromley. Quantum
computational finance: Monte carlo pricing of financial derivatives.
Physical Review A, 98(2):022321, 2018.

Jason Sanders and Edward Kandrot. CUDA by example: an introduction
to general-purpose GPU programming. Addison-Wesley Professional,
2010.

Maria Schuld and Nathan Killoran. Quantum machine learning in
feature hilbert spaces. Physical review letters, 122(4):040504, 2019.
In-Saeng Suh and Ang Li. Simulating quantum systems with nwq-sim
on hpc. https://sc23.supercomputing.org/proceedings/tech_poster/
poster_files/rpost195s3-file3.pdf. Online.

https://github.com/szcompressor/cuSZ
https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp
https://www.ibm.com/quantum/blog/ibm-quantum-roadmap?mhsrc=ibmsearch_a&mhq=condor
https://www.ibm.com/quantum/blog/ibm-quantum-roadmap?mhsrc=ibmsearch_a&mhq=condor
https://qiskit.org/
https://developer.nvidia.com/cuquantum-sdk
https://developer.nvidia.com/cuquantum-sdk
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://developer.nvidia.com/nvcomp
https://sc23.supercomputing.org/proceedings/tech_poster/poster_files/rpost195s3-file3.pdf
https://sc23.supercomputing.org/proceedings/tech_poster/poster_files/rpost195s3-file3.pdf

szcompressor. Sz2.

Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. Sig-
nificantly improving lossy compression for scientific data sets based
on multidimensional prediction and error-controlled quantization. In
2017 IEEE International Parallel and Distributed Processing Symposium,
pages 1129-1139, Orlando, FL, USA, 2017. IEEE.

Andrew G Taube and Rodney] Bartlett. New perspectives on unitary
coupled-cluster theory. International journal of quantum chemistry,
106(15):3393-3401, 2006.

Quantum Al team and collaborators. qsim, September 2020.

[43] Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp,

(4]

(45]

Robert Underwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao,
et al. Cusz: An efficient gpu-based error-bounded lossy compression
framework for scientific data. In Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques, pages
3-15, 2020.

Steven R White. Density matrix formulation for quantum renormal-
ization groups. Physical review letters, 69(19):2863, 1992.

Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cap-
pello, Hal Finkel, Yuri Alexeev, and Frederic T Chong. Full-state

14

[46]

[47]

(48]

[49]

quantum circuit simulation by using data compression. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1-24, 2019.

Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu, Yunhe Feng,
Xin Liang, Dingwen Tao, and Franck Cappello. Fz-gpu: A fast and
high-ratio lossy compressor for scientific computing applications on
gpus. arXiv preprint arXiv:2304.12557, 2023.

Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu, Martin Swany,
Dingwen Tao, and Franck Cappello. Gpulz: Optimizing lzss lossless
compression for multi-byte data on modern gpus. arXiv preprint
arXiv:2304.07342, 2023.

Chen Zhang, Zeyu Song, Haojie Wang, Kaiyuan Rong, and Jidong
Zhai. Hyquas: hybrid partitioner based quantum circuit simulation
system on gpu. In Proceedings of the ACM International Conference on
Supercomputing, pages 443-454, 2021.

Chen Zhang, Haojie Wang, Zixuan Ma, Lei Xie, Zeyu Song, and Jidong
Zhai. Unigq: a unified programming model for efficient quantum circuit
simulation. In SC22, pages 692-707. IEEE Computer Society, 2022.

	Abstract
	1 Introduction
	2 Background
	2.1 Principles of State-Vector Simulation
	2.2 Floating-Point Lossy Compression
	2.3 CUDA Memory Architecture

	3 Feasibility Analysis
	4 Design of BMQSim
	4.1 Optimal-Compression Circuit Partition
	4.2 Transfer-Concealed Workflow
	4.3 Point-wise Error Control for GPU Compression
	4.4 Two-Level Memory Management

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Evaluation of Supported Qubit Number
	5.3 Comparison with SC19-Sim
	5.4 Evaluation of Memory Consumption
	5.5 Evaluation of Simulation Time
	5.6 Compression Overhead Analysis
	5.7 Pipeline Design Analysis
	5.8 Other Evaluations

	6 Conclusion and Future Work
	References

